

STRUCTURE MOLÉCULAIRE ET RÉTENTION EN CHROMATOGRAPHIE EN PHASE GAZEUSE

INFLUENCE DE LA TEMPÉRATURE SUR L'INDICE DE RÉTENTION D'ALCANES ISOMÈRES

D. A. TOURRES

Compagnie Française de Raffinage, Gonfreville-L'Orcher, Seine-Maritime ((France)) (Reçu le 21 mars 1967)

INTRODUCTION

L'influence de la température sur la rétention relative des substances en chromatographie en phase gazeuse apparaît comme un phénomène complexe. De nombreux auteurs ont signalé ou étudié la relation existant entre la température et l'ordre d'élution des solutés.

PURNELL¹ étudie les relations liant le volume de rétention, la tension de vapeur du soluté à la température de colonne et le rapport entre la chaleur molaire de solution à dilution infinie et la chaleur latente de vaporisation. Il établit les diagrammes de rétention [log $V_{R'} = f(\log P)$] pour différentes fonctions chimiques (esters, alcools, aromatiques). Plus récemment BLAUSTEIN, ZAHN ET PANTAGES² observent des inversions dans l'ordre d'élution d'un certain nombre d'hydrocarbures élués entre 40 et 80°; BRICTEUX ET DUYCKAERTS³ étudient le comportement particulier des paraffines et des cycloparaffines en fonction de la température et signalent que ce comportement peut être mis à profit dans l'identification de mélanges complexes en permettant de classer directement les composés dans l'une ou l'autre catégorie d'hydrocarbures.

Ces différents auteurs ont étudié l'influence de la température sur le comportement de substances appartenant soit à des familles chimiques bien différentes, soit à la même famille mais dans un grand intervalle de poids moléculaire. SIMMONS, RICHARDSON ET DVORETZKY⁴ signalent et utilisent le même phénomène dans l'élution de solutés appartenant à une même famille d'isomères paraffiniques à meuf atomes de carbone chromatographiés sur colonne capillaire.

La Fig. 1, qui représente les chromatogrammes sur colonne capillaire de squalane à 30, 50 et 70° d'un mélange d'environ 70 alcanes, du *m*-pentane au *m*-nonane, niet bien en évidence l'influence de la température sur la rétention relative des solutés. On voit que dans un intervalle de température de 40°, le même mélange se présente sous trois aspects nettement différents. Il nous a semblé intéressant d'approfondir ce phénomène et de l'utiliser pour l'analyse des mélanges d'alcanes.

Nous avons choisi l'indice de rétention de Kováts comme caractéristique de rétention et nous avons étudié, sur colonne capillaire, sa variation en fonction de la température pour les alcanes en C_5 , C_6 , C_7 , C_8 et C_9 .

Fig. 1. Influence de la température sur l'élution des alcanes en C_5-C_9 .

PARTIE EXPÉRIMENTALE

A ppareillage

Le chromatographe utilisé pour ce travail est un appareil construit dans notre laboratoire, équipé d'un détecteur à ionisation de flamme et spécialement destiné à recevoir des colonnes capillaires.

La colonne utilisée, en acier inox, a 100 mètres de longueur et 0.25 mm de diamètre intérieur; la phase stationnaire est le squalane; le remplissage a été effectué à l'aide d'une solution à 10% Pds de squalane dans du n-pentane. Les conditions opératoires sont décrites dans le Tableau I.

TABLEAU I

CONDITIONS D'UTILISATION DU CHROMATOGRAPHE POUR LA DÉTERMINATION DES INDICES DE RÉTENTION DES PENTANES, HEXANES, HEPTANES, OCTANES ET NONANES

Température de la colonne (°C)	30	50	70	
Gaz vecteur	hydrogène	hydrogène	hydrogène	
Pression d'entrée (bar)	2.2	2.0	1.9	
Débit du gaz vectour à la sortie de la colonne, à la pression atmosphérique et à la température ambiante (ml/h)	80	48	36	

Nous avons utilisé l'hydrogène comme gaz vecteur de préférence à l'azote car il permet d'effectuer des analyses dans un temps beaucoup plus court sans changer la résolution.

Nous obtenons 150 000 plateaux théoriques pour le m-moname à 36°, calculés par

 $m = \pi G((d_R''/|\omega))^2$ $d_R'' = \text{distance de néteration nédmitte,}$ $\omega = \text{largeur du pic à la base,}$

La résolution m-C_s/m-C_p à 36° est égale à 80, calculée à partir de:

$$\mathbb{R} = \frac{2\left[d_{\mathbb{I}^{\Lambda}(m-(C9))} - d_{\mathbb{I}^{\Lambda}(m-(C9))}\right]}{d\omega(m-(C9)) + d\omega(m-(C9))}$$

avec

 $d_{R} =$ distance de rétention depuis l'impection.

Dans ce travail le temps de rétention de l'air a toujours été déterminé par une méthode de calcul due à Pererson er Hurse⁵ utilisant la relation linéaire qui existe entre le logarithme du temps de rétention réduit et le nombre d'atomes de carbone dans une série homologue.

Synthèses

Nous disposions, à l'état pur, de tous les pentames, hexanes, heptanes, de 17 des 18 octanes et de 15 des 35 nonances. Pour symthétiser les isomères qui nous manquaient, nous avons utilisé la réaction de "methylene insertion" rapportée par Doerung et ses collaborateurs⁶ et déjà utilisée par Sunnoss *et al.*⁴ pour la symthèse des nonanes. Dans le Tableau II, on donne en negard des isomères symthétisés (octane No. 2) (nonanes No. A à T) l'indication des isomères précurseurs.

RÉSULTATS ET DISCUSSION

Valeurs des ämdäces de métemtäom

Nous avons mesuné les indices de rétention des trois isomères en C_5 , des cinq isomères en C_6 , des neuf isomères en C_7 , des dix huit isomères en C_8 et des trente cinq isomères en C_9 , à 30°, 50° et 70°. Nous donnoms, dans les Tableaux III à VII, les valeurs retenues qui sont les moyennes, arrondies à 0.1 point, d'au moins trois déterminations. Dans les conditions où nous avons opéré, l'écart type sur une déternination d'indice, calculé à partir de onze mesures sur chacun des isomères en C_8 se situe à S = 0.149, ce qui cornespond à un intervalle de confiance de $\pm 0.172(2S/\sqrt{3})$ pour une moyenne de trois mesures, au niveau de probabilité 95 %.

Une publication nécente du Data Subcommittee of the Gas Chromatography Discussion Group of the Institute of Petroleum" présente les résultats d'un essai circulaire concernant la détermination des indices de rétention d'un certain nombre d'hydrocarbunes légers saturés sur plusieurs phases stationnaires (dont le squalane) et à différentes températures. L'écart entre les indices de cette publication (valeurs arrondies à l'unité) et ceux que nous avons déterminés (Tableaux III à VI, 30 et 70°) est toujours inférieur à 1 point.

TABLEAU II

SYNTHÈSE PAR "METHYLENE INSERTION"

C ₈ et C	C _o synthétisés	C ₇ et C ₈	C ₇ et C ₈ précurseurs						
No.	Nom	2,2,3- TriM C ₄	2-M C7	3-M C7	4-M C7	2,4- DiM C ₆	3-ET C ₆	2-M-3- ET C ₅	
2	2,2,3,3-TetraM C ₄	-+-							
A B C D	2,2-DiM C ₇ 2,4-DiM C ₇ 2-M-4-ET C ₆ 2,2-DiM-3-ET C ₅		+ +		+	+++++++++++++++++++++++++++++++++++++++	+	+	
E F G H	4,4-DiM C ₇ 2,5-DiM C ₇ 3,5-DiM C ₇ 2,4-DiM-3-ET C ₅		+	+- +-	+	+		+	
J K L M	3,3-DIM C_7 2-M-3-ET C_6 3-M-4-ET C_6 2,3-DIM C_7 3.4-DIM C_7		+	-+- -+-	+		++	+ +	
N O P Q F	3-M-3-ET C_6 4-ET C_7 4-M C_8 3-ET C_7	·		• •+ •+	• + +		+ + +		
S T	$_{3-M}^{2-1M}C_{g}$ 3-M C_{g} 2,3-DiM-3-ET C_{5}		++	+				+	

TABLEAU III

INDICES DE RÉTENTION DES *pentanes* DÉTERMINÉS SUR SQUALANE

No. des pics	Nom	Température	Indice de rétention			
		d'ebullition (°C)*	3 0°	50°	70°	
I	2,2-Diméthylpropane	9.500	410.6	411.7	412.9	
2	2-Méthylbutane	27.852	473.8	474.0	474.3	
3	n-Pentane	36.074	500	500	500	

* A.P.I., Juillet 1961.

TABLEAU IV

INDICES DE RÉTENTION DES hexanes déterminés sur squalane

No. des pics	Nom	Température	Indice de rétention			
		d'ébullition (°C)*	30°	50°	70°	
I	2,2-Diméthylbutane	49.741	535.0	536.6	538.2	
2	2,3-Diméthylbutane	57.988	565.6	567.6	569.7	
3	2-Méthylpentane	· 60.27I	569.2	569.5	569.7	
4	3-Méthylpentane	63.282	583.0	584.0	585.0	
5	n-Hexane	68.740	600	600	600	

* A.P.I., Juillet 1961.

TABLEAU V

INDICES	DE	RÉTENTION	DES	heptanes	DÉTERMINÉS	SUR SQUALANE
---------	----	-----------	-----	----------	------------	--------------

No.	Nom	Température	Indice de rétention			
aes pics		(°C)*	3 0°	50°	70°	
I	2,2-Diméthylpentane	79.197	624.5	625.9	627.2	
2	2,4-Diméthylpentane	80.500	629.3	629.9	630.5	
3	2,2,3-Triméthylbutane	80.882	636.7	639.8	642.9	
4	3,3-Diméthylpentane	86,064	656.0	658.9	661.8	
5	2,3-Diméthylpentane	89.784	669.6	671.7	673.7	
6	2-Méthylhexane	90.052	666.2	666.5	666.8	
7	3-Méthylhexane	91.850	675.5	676.2	676.9	
8	3-Ethylpentane	93.475	684.7	685.9	687.1	
9	<i>n</i> -Heptane	98.427	700	700	700	

* A.P.I., Juillet 1961.

TABLEAU VI

INDICES DE RÉTENTION DES octanes DÉTERMINÉS SUR SQUALANE

No.	Nom	Température	Indice de rétention			
des pics		(°C) [*]	30°	50°	70°	
I	2,2,4-Triméthylpentane	99.238	687.7	690.I	692.4	
2	2,2,3,3-Tétraméthylbutane	106.47	720.7	725.9	731.1	
3	2,2-Dimethylhexane	106.840	718.4	719.5	720.7	
4	2,5-Diméthylhexane	109.103	727.9	728.5	729.1	
5	2,4-Diméthylhexane	109.429	731.1	732.1	733.2	
6	2,2,3-Triméthylpentane	109.841	734.0	737.3	740.6	
7	3,3-Diméthylhexane	111.969	741.1	743.7	746.3	
8	2,3,4-Triméthylpentane	113.467	749.5	752.5	755.5	
9	2,3,3-Triméthylpentane	114.760	755.5	759.8	764.1	
10	2,3-Diméthylhexane	115.607	759.0	760.4	761.8	
II	2-Méthyl-3-éthylpentane	115.650	758.4	761.6	764.8	
12	2-Méthylheptane	117.647	764.6	765.I	765.7	
13	4-Méthylheptane	117.709	767.0	767.5	768.0	
14	3,4-Diméthylhexane	117.725	768.7	770.9	773.2	
15	3-Méthyl-3-éthylpentane	118.259	770.4	774.4	778.4	
16	3-Ethylhexane	118.534	772.1	772.9	773.6	
17	3-Méthylheptane	118.925	772.1	772.9	773.6	
18 .	<i>n</i> -Octane	125.665	800	800	800	

* A.P.I., Juillet 1961.

Variation de l'indice de rétention avec la température suivant la structure

Bien que la relation I = f(T) soit hyperbolique (équation de la forme I = p + [(q + rT)/(q' + r'T)]), le domaine de température sur lequel on opère n'est pas assez grand pour que la courbure se manifeste et les courbes obtenues peuvent être considérées comme des droites. Nous avons représenté sur les Fig. 2 à 5 les droites correspondant aux données des Tableaux III à VII. Pour ces figures nous avons classé à

TABLEAU VII

INDICES DE RÉTENTION DES nonanes DÉTERMINÉS SUR SQUALANE

No.	Nom	Température	I maläce de rêtentiom			
des pics		d'ébullition (°C)*	300	500°	70°	
I	2,2,4,4-Tétraméthylpentane	122.284	769.3	778-1	<i>77 7</i> 6.0	
2	2,2,5-Triméthylhexane	124.084	775-4	776.7	778.0	
3	2,2,4-Triméthylhexane	126.54	786.8	789.5	792.2	
4	2,4,4-Triméthylhexane	130.648	80 <u>5</u> .0	808.2	Str.4	
5	2,3,5-Triméthylhexane	131.94	S10.7	812.1	S1.1.1	
Α	2,2-Diméthylheptane	132.69	814.9	815.8	S16.7	
в	2,4-Diméthylheptane	132.89	821.I	821.5	821.g	
6	2,2,3,4-Tétraméthylpentane	133.016	S15.6	820.1	824.6	
7	2,2,3-Triméthylhexane	133.60	818.7	821.9	825.1	
Ċ	2-Méthyl-4-éthylhexane	133.80	823.2	\$24.3	\$25.1	
D	2,2-Diméthyl-3-éthylpentane	133.83	S18.0	822.2	826.1	
E	4,4-Diméthylheptane	135.2	825.3	\$27.6	82q.q	
8	2,6-Diméthylheptane	135.21	826.7	827.2	\$27.7	
F	2,5-Diméthylheptane	136.0	832.3	832.g	\$33-5	
G	3,5-Diméthylheptane	136.0	832.6	833-7	\$34.8	
Н	2,4-Diméthyl-3-éthylpentane	136.69	832.8	\$36.4	840.0	
I	3,3-Diméthylheptane	137-01	833.8	836. I	8 <u>3</u> 8t	
9	2,3,3-Triméthylhexane	137-66	836.3	840.Q	843.7	
J	2-Méthyl-3-éthylhexane	138.0	841.6	8.13.7	845.8	
10	2,3,4-Triméthylhexane	139.04	843.4	8.46.6	8.49.8	
			846.6	849.6	\$52.6	
II	2,2,3,3-Tétraméthylpentane	140.274	847-3	\$52.7	\$58. T	
K	3-Méthyl-4-éthylhexane	140.4	851.7	\$54.8	\$57.9	
12	3,3,4-Triméthylhexane	140.46	848.7	853.1	\$57.5	
L	2,3-Diméthylheptane	I 40-5	853-5	854-8	856. I	
M	3,4-Diméthylheptane	140.6	856.3	858.4	\$60.0	
			856.8	858.4	\$60.0	
N	3-Méthyl-3-éthylhexane	I 40.0	850.0	853-5	\$57.0	
0	4-Ethylheptane	141.2	856.6	\$57-5	\$5\$.4	
13	2,3,3,4-Tétraméthylpentane	141.551	853.6	858.9	\$64.2	
Р	4-Méthyloctane	I42.42	862.3	862.9	\$63.5	
Q	3-Ethylheptane	143.0	&66.0	866.9	\$67.8	
R	2-Méthyloctane	143.26	864-4	864-7	\$65.0	
S	3-Méthyloctane	144.21	869.6	870-3	871.o	
Т	2,3-Diméthyl-3-éthylpentane	44.7	866.9	872-3	\$77.7	
14	3,3-Diéthylpentane	146.168	871.8	877.6	\$\$3.4	
15	<i>n</i> -Nonane	150.798	900	ക്കര	900	

* A.P.I., Juillet 1961.

chaque niveau de carbone C_n (n = 5 à 9) les isomères en quatre groupes G_1 à G_9 suivant la longueur de la chaîne droite la plus longue:

Groupe	Structure	Fig. 2 à 5
G ₁ G ₂	Méthyl C_{n-1} $\begin{cases} Diméthyl C_{n-2} \\ Ethyl C_{n-2} \end{cases}$	
G ₃	$\begin{cases} Triméthyl C_{n-3} \\ Méthyléthyl C_{n-3} \end{cases}$	
G,	$ \left\{ \begin{array}{l} {\rm T\'etram\'ethyl} \ {\rm C}_{n-4} \\ {\rm Dim\'ethyl\'ethyl} \ {\rm C}_{n-4} \\ {\rm Di\'ethyl} \ {\rm C}_{n-4} \end{array} \right. $	

On voit nettement que plus la ramification augmente (de G_1 vers G_4), plus les pentes des droites sont grandes, c'est-à-dire plus l'indice de rétention de l'hydrocarbure augmente avec la température.

Les Tableaux VIII à XII permettent de préciser cette relation entre la structure de la molécule et la variation de l'indice de rétention avec la température. Ils donnent, pour chaque isomère, sa température d'ébullition et la variation d'indice de rétention pour 10° calculée à partir de nos mesures. Dans chaque tableau, on a classé les alcanes selon les groupes G_1 , G_2 , G_3 , G_4 définis plus haut. A l'intérieur de chaque groupe, on a

TABLEAU VIII

VARIATION DE L'INDICE DE RÉTENTION DES *pentanes* avec la température suivant la structure

Groupe	Structure	No.	Nom	Température d'ébullition (°C)	ΔΙ/10°
G	M C ₄	2	2-M C4	27.8	0.12
G ₂	DiM C ₃	I	2,2-DiM C ₃	9.50	0.57

TABLEAU IX

VARIATION DE L'INDICE DE RÉTENTION DES *hexanes* avec la température suivant la structure

Groupe	Structure	No.	Nom	Température d'ébullition (°C)	ΔΙ/10°	Fig. 6
Gı	MC ₅	3 4	2-M C ₅ 3	60.3 63.3	0.12 0.50	+
G ₂	DiM C ₄	I 2	2,2-DiM C ₄ 2,3	49•7 58.0	0.80 1.00	

TABLEAU X

VARIATION DE L'INDICE DE RÉTENTION DES *heptanes* avec la température suivant la structure

Groupe	Structure	No.	Nom	Température d'ébullition (°C)	Δ1/10°	Fig. 7
G ₁	M C ₆	6 7	2-M C ₆ 3	90.0 91.8	0.14 0.35 [,]	++
$\overline{G_2}$	DiM C ₅	1 4	2,2-DiM C ₅ 3,3	79.2 86.1	0.67 1.45	
		2 5	2,4 2,3	80.5 89.8	0.32 1.01	-
	ET C ₅	8	3-ET C ₅	93.5	0,62	Ξ
G ₃	TriM C ₄	3	2,2,3-TriM C ₄	80.9	1.55	0

TABLEAU XI

VARIATION DE L'INDICE DE RÉTENTION DES OCTOMES AVEC LA TEMPÉRATURE SUIVANT LA STRUCTURE

Groupe	Structure	N:0.	Noonn	Température d'ébuillition (°C)	AI/10°	Fig. 8
G ₁	MC ₇	12	2-M C ₂	117.6	0.27	+-
•	•	13		I I 7-7	0.27	
		17	3	118.9	0.37	
G,	DiM Ca	3	2,2-DiM C _g	106.8	o.59	E)
-	Ū	7	3,3	111.9	I.30	
		-4	2,5	109. I	o.30	
		5	2,4	109.4	0.53	
		IO	2,3	115.6	0.72	
		I.4	3.4	I I 7.7	1.12	
	ET C ₆	16	3-ЕТ С _с	118.5	o.37	Φ
G.	TriM Cr	π	2.2.1-TriM C.	99.2	1.18	0
- a		6	2,2,3	109.8	1.66	-
		9	2,3,3	114.7	2.14	
		8	2,3.4	I I 3-4	1.50	٠
	M-ET C ₅	15	3-M-3-ET C3	118.2	1.99	\odot
		ΙΙ	2 3	115.6	1.60	\oplus
G ₄	TetraM C ₄	2	2,2,3,3-TetraM C4	106.5	2.62	Δ

défini des sous-groupes correspondant à la nature et/ou à la position des substituants. L'étude de ces tableaux amène les observations suivantes:

(a) La variation de l'indice avec la température croît du groupe G₁ au groupe

G₄. Le Tableau XIII donne les valeurs moyennes de $\Delta I/10^{\circ}$. Il complète les Fig. 2 à 5. (b) A l'intérieur d'un groupe, les valeurs de $\Delta I/10^{\circ}$ sont cependant très dispersées. Par exemple, pour le groupe G₂, $\Delta I/10^{\circ}$ varie de 0.32 à 1.45 pour les C₇, de 0.30 à 1.30 pour les C₈ et de 0.20 à 1.15 pour les C₉.

(c) On est ainsi amené à considérer des sous-groupes basés sur le nombre d'atomes de carbone quaternaire et d'atomes de carbone tertiaire dans la molécule, c'est-à-dire sur le nombre, la nature et la position des substituants. Par exemple pour le groupe G_2 , on rassemble les molécules avec un carbone quaternaire, les molécules avec deux carbones tertiaires et les molécules avec un carbone tertiaire.

A l'intérieur de chaque sous-groupe ainsi défini, $\Delta I/10^{\circ}$ varie dans le même sens que la température d'ébullition.

(d) Une autre représentation graphique du phénomène consiste à porter, comme le font BRICTEUX ET DUYCKAERTS³ pour les temps de rétention, les indices de rétention à une température en fonction des indices à une autre température. Les Fig. 6 à 9 représentent pour les alcanes en C₆, C₇, C₈ et C₉ les courbes $I_{70^\circ} = f(I_{30^\circ})$. Pour chaque condensation en carbone, toutes les structures envisagées selon le nombre, la nature et la position des substituants sont représentées par des points différenciés; la signification de ces points se trouve dans les Tableaux IX à XII. Compte-tenu de la

IABLEAU AII	EAU XII
-------------	---------

VARIATION DE L'INDICE DE RÉTENTION DES *nonanes* avec la température suivant la structure

Groupe	Structure	No.	Nom	Température d'ébullition (°C)	Δ <i>I</i> /10°	Fig. 9
G1	M C _g	P	4-M C ₈	142.4	0.30	-+-
		S	3	143.3	0.35	
G ₂	DiM C ₇	A E	2,2-DiM C ₇ 4,4	132.7 135.2	0.45 1.15	
		L TP	3.3	137.0	1.15	_
		8 F	2.4 2,6 2,5	132.9 135.2 136.0	0.25 0.30	-
		L M	3,5 2,3 3,4	130.0 140.5 140.6	0.55 0.65 0.80	
	ET C7	O Q	4-ET C ₇ 3	141.2 143.0	0.45 0.45	Ф
G ₃	TriM C ₆	2 3 4 7 9 12	2,2,5-TriM C ₆ 2,2,4 2,4,4 2,2,3 2,3,3 3,3,4	124.1 126.5 130.6 133.6 137.7 140.5	0.65 1.35 1.60 1.60 1.85 2.20	0
		5 10	2,3,5 2,3,4	131.9 139.0	1.50-1.80	•
	M-ET C ₆	N C J K	3-M-3-ET C ₆ 2 4 2 3 3 4	140.6 133.8 138.0 140.4	1.75 0.55 1.05 1.55	⊙ ⊕
G ₄	TetraM C ₅	I II	2,2,4,4-TetraM C ₅ 2,2,3,3	122.3 140.3	1.90 2.70	\bigtriangleup
		6 13	2,2,3,4 2,3,3,4	133.0 141.5	2.25 2.65	A
	Dim-et C_5	D T	2,2-DiM-3-ET C ₅ 2,3 3	133.8 144.7	2.10 2.70	
		н	2,4 3	136.7	1,80	\diamond
	DiET C ₅	14	3,3-DiET C ₅	146.2	2.90	*

TABLEAU XIII

valeurs movennes de $\Delta I/10^{\circ}$

Groupes	Pentanes	Hexanes	Heptanes	Oclanes	Nonanes	
G,	0.12	0.31	0.25	0.30	0.31	
Ğ,	0.57	0.90	0,80	0.70	0.58	
G	07	-	1.55	1.68	1.28	
G ₄				2.62	2.38	

Fig. 2. Variation de l'indice de rétention avec la température pour les pentanes (a) et les hexanes (b).

Fig. 3. Variation de l'indice de rétention avec la température pour les heptanes.

Fig. 4. Variation de l'indice de rétention avec la température pour les octanes. Fig. 5. Variation de l'indice de rétention avec la température pour les nonanes.

Fig. 8. Courbes $I_{70^\circ} = f(I_{30^\circ})$ pour les octanes. Fig. 9. Courbes $I_{70^\circ} = f(I_{30^\circ})$ pour les nonanes.

précision obtenue sur la mesure des indices, on peut déduire de ces diagrammes, que pour chaque condensation en carbone:

(a) Les points $I_{70^\circ} = f(I_{30^\circ})$ correspondant à l'ensemble des alcanes ne se placent pas sur une droite unique.

(b) Les points correspondant aux alcanes de mêmes structures se placent sur des

droites et les droites correspondant aux différentes structures sont parallèles entre elles.

D'autre part la droite correspondant à une structure donnée pour les alcanes en C_n n'est pas dans le prolongement de la droite correspondant à la même structure pour les alcanes en C_{n+1} ou C_{n-1} (Tableau XIV). Les équations de ces droites ont été calculées par la méthode des moindres carrés.

Dans le Tableau XV sont rassemblés pour les différents sous-groupes des Tableaux IX à XII comprenant au moins deux isomères, d'une part les pentes des droites $I_{70^\circ} = f(I_{30^\circ})$, d'autre part les valeurs I_{70° correspondant à des I_{30° de 550, 650, 750 et 850.

TABLEAU XIV

EVALUATION	DU	DÉCALAGE	DES	COURBES	I 70°	=	$f(I_{30}^{\circ})$	
------------	----	----------	-----	---------	-------	---	---------------------	--

Structure	$I_{30^{\circ}} = 700$	$I_{30^{\circ}} = 800$	$I_{30^{\circ}} = 900$		
	$\overline{I_{70^{\circ}}(C_6) - I_{70^{\circ}}(C_7)}$	$I_{70^{\circ}}(C_7) - I_{70^{\circ}}(C_8)$	$\overline{I_{70}^{\circ}(C_8) - I_{70}^{\circ}(C_9)}$		
+	8.9	7.0	5.7		
		6.5 10.1	7.2 11.2		
0			5.6		

On observe que toutes les pentes sont très voisines de 1.08.

Pour chaque condensation de carbone, les valeurs I_{70}° rapportées dans le Tableau XIV chiffrent le décalage les unes par rapport aux autres des droites correspondant aux différentes structures.

On observe que pour un indice donné à 30°, l'indice à 70°:

(a) croît avec la ramification

(comparer les points + $\left| \begin{array}{c} \Box \\ \bullet \end{array} \right| \left| \begin{array}{c} \circ \\ \bullet \end{array} \right| \left| \begin{array}{c} \triangle \\ \bullet \end{array} \right|$

(b) croît lorsque deux carbones tertiaires se trouvent remplacés par un carbone quaternaire

(comparer les points \blacksquare et \square , \blacksquare et \bigcirc , \blacktriangle et \triangle)

(c) croît lorsqu'un substituant éthyl est remplacé par deux substituants méthyl

(comparer les points $\oplus \operatorname{et} / \overset{\Box}{\bullet}$, $\oplus \operatorname{et} / \overset{\circ}{\bullet}$, $\triangle \operatorname{et} / \overset{\triangle}{\bullet}$).

Cas de l'isomérie optique

SIMMONS et ses collaborateurs⁴ signalent la présence de deux pics de surfaces égales pour le 2,3,4-triméthylhexane. Ils attribuent ce doublet à la résolution des deux diastéréoisomères dus à la présence de deux carbones assymétriques dans la molécule de cet hydrocarbure. Nous avons également obtenu une très bonne séparation de ces isomères (soluté No. 10): résolution R = 2; cette résolution correspond à une différence d'indice de 3 points.

Les auteurs précédents n'ont pas obtenu la séparation des diastéréoisomères du 3,4-diméthylheptane et du 3,5-diméthylheptane qui possèdent eux aussi deux

TABLEAU XV

ETUDE DES COURBES $I_{70}^{\circ} = f(I_{30}^{\circ})$

Nature des substituants	Nombre d'atomes de carbone		Fig. 6 à 9	Pentes des droites $I_{i0}^{\circ} = f(I_{30}^{\circ})$			Indice de rétention à 70° pour un indice de rétention à 30° de				
	tertiaire	quater= naire		Hexanes	Heptanes	Octanes	Nonanes	550 (Hexanes)	650 (Heptanes)	750 (Octanes)	850 (Nonanes)
=CH _a	Ì		+	t.tt	1.09	t.07	1.0 4	548.4	649.t	750.0	849.5
	2				t.07	t.00	t.09		652.7	752.9	853.0
		t			t.to	t.t2	t.09		655.2	756.4	856.0
	3		•				t.03				854.4
	t	t	Ô			1.00	t.08			758.0	859. t
	2	t	A				1.04				860.4
		2	Δ				t.04				860.9
=CH ₂ =CH ₃	t		Ф				1.00				8:18:3
=CHa	3		۲				1.13		·		833.7
et =CH2=CH8	Ŧ	t	Δ				1.03				\$60.0

369

2

carbones assymétriques dans la molécule. En ce qui concerne le 3,4-diméthylheptane (pic No. M) nous avons observé, sinon une séparation totale, du moins une résolution suffisante (0.5 point d'indice à 36°) permettant de repérer les deux diastéréoisomères.

La Fig. 10 représente les chromatogrammes à 36° du 2,3,4-triméthylhexane (No. 10) et du 3,4-diméthylheptane (No. M) obtenus par la réaction de microsynthèse signalée précédemment. En ce qui concerne le 3,5-diméthylheptane, il existe une forme inactive par compensation interne et une forme active. Ces deux isomères géométriques n'ont pas été séparés.

Fig. 10. Séparation des diastéréoisomères.

ASPECT THÉORIQUE

Si on considère la rétention relative α de deux solutés 1 et 2, on peut écrire⁸:

$$\alpha_{1,2} = \frac{(d_R')_2}{(d_R')_1} = \frac{K_2}{K_1} = \frac{\gamma^{\circ}_1 P^{\circ}_1}{\gamma^{\circ}_2 P^{\circ}_2}$$

où

 $d_{R'}$ est la distance de rétention réduite du soluté,

K est le coefficient de partage,

 P° est la tension de vapeur du soluté pur à la température d'utilisation de la colonne,

 γ° est le coefficient d'activité du soluté dans la phase stationnaire utilisée, d'où

$$\log \frac{(d_R')_2}{(d_R')_1} = \log \frac{P^{\circ}_1}{P^{\circ}_2} + \log \frac{\gamma^{\circ}_1}{\gamma^{\circ}_2}$$
(1)

Rappelons d'autre part que, par d'éfinition, l'indice de rétention de Kováts de la normale paraffine à z attonnes de carbone est noo z et que pour les molécules à six atonnes de carbone ou plus, l'indice de rétention est défine par la relation:

$$I = \Box \cos z + 2 \cos \frac{\log \left(\left(d l_R' \right) \right)_{ss} - \log \left(\left(d l_R' \right) \right)_{zs}}{\log \left(\left(d l_R' \right) \right)_{zs+22} - \log \left(\left(d l_R' \right) \right)_{zs}}$$
(2)

dans llaquelle

 $((d_{lR}'))_{S}$ (est lla distance de néttention nédhuite du soluté;

 $((\mathcal{A}_{ln'}))_{\mathcal{Z}}$ et $((\mathcal{A}_{ln'}))_{\mathcal{Z} \to \mathcal{D}}$ somt les distances de nétention réduites des normales paraffines à \mathcal{Z} et $((\mathcal{Z} \to \mathcal{D}))$ attomes de cambone.

En combinant lles équations ((I)) et ((2)), on exprime l'indice de rétention d'un soluté S en fonction des tensions de vapeur et des coefficients d'activité du soluté et des *m*-paraffines à z et ((z + z)) attomes de carbone, par la relation::

$$I = 1000z + 200 \frac{\log P^{10}z - \log P^{10}w + L_1}{\log P^{10}z - \log P^{10}w + L_2}$$
(3)

awec

$$\mathcal{L}_{11} = \log \frac{\eta'^{\circ} z}{\eta'^{\circ} s}$$
$$\mathcal{L}_{12} = \log \frac{\eta'^{\circ} z}{\eta'^{\circ} z + 2}$$

BRICHEUX ET DUNCKMERUS³⁰ ont monthé expérimentalement que dans un système de solvant et de soluttés non polaines les napports des coefficients d'activité ne dépendent pas de la température. Nos mesures monthent également la constance de ces rapponts avec la température ((Rableau XWI)). Pour un soluté et des *n*-parafines données, \mathcal{I}_{1} et \mathcal{I}_{2} sont des constantes. La variation de l'indice de rétention d'un soluté avec la température est donc liée à la variation de la tension de vapeur de ce soluté avec la température et à la valeur des coefficients d'activité. On peut donc s'attendre à ce qu'une grandeur comme

$$I_{IP}^{\circ} = \frac{\log I^{P^{\circ}}m - \mathbb{C}_{\varpi} - \log I^{P^{\circ}}_{\mathscr{B}}}{\log I^{P^{\circ}}m - \mathbb{C}_{\varpi} - \log I^{P^{\circ}}_{\mathscr{B}}m - \mathbb{C}_{\varpi + \mathfrak{P}}}$$

wanie, awec lla trempénature, de manifine analogue à l'indice de rétention I. I_P° peut être considéré comme représentant l'évolution de la tension de vapeur du soluté Snelativement à celles des *m*-paraffines à z et z + 2 atomes de carbone. Nous avons calculé cettre expression pour trous les monanes isomènes, à trois températures, en utilisant l'équation d'Antoine:

$$\log I^{po} = ... - \frac{I^{p}}{C + t}$$

dans laquelle *P*° est la tension de vapeur exprimée en mm de mercure; *t* la température en °C. Les valeurs des constantes *A*, *B* et *C* ont été extraites des tables de l'American Petroleum Instituté⁹.

TABLEAU XVI

RAPPORTS DES COEFFICIENTS D'ACTIVITÉ DE QUELQUES NONANES $\gamma^{\circ}_{n-C7}/\gamma^{\circ}_{\text{Soluté}}$

	Température		
·	58°	80°	
2,2,4,4-TetraM C ₅	0.93	0.92	
2,2,3,4-TetraM C ₅	0.95	0.96	
2,2,3,3-TetraM C ₅	1.02	1.01	
2,3,3,4-TetraM C ₅	1.02	1.01	
2,2,5-TriM C ₆	0.84	0.84	
2,2,4-TriM C ₆	0.89	0.89	
2,4,4-TriM C ₆	0.92	0.92	
2,3,3-TriM C ₆	0.96	0.95	
2,2-DiM C, 2,4-DiM C, 4,4-DiM C, 2,5-DiM C,	0.87 0.86 0.88 0.88 0.88	0.86 0.87 0.88 0.87	
4-M C ₈	0.86	0.85	
2-M C ₈	0.88	0.86	
3-M C ₈	0.91	0.89	

Fig. 11. Variation de I_{P} ° avec la température pour les nonanes.

Fig. 12. Influence de la température sur l'élution d'une fraction d'un trimère de propylène industriel hydrogéné.

Less walkuns obtennes nous ont permis de tracer les courbes $I_P^\circ = f(t)$ pour chaque solutté ((Fig. 11)). Ces courbes sont classées suivant les groupes G_1 à G_4 déjà uttillisés pour les indices de rétention. Comme pour les indices de rétention, les courbes $I_{P^{i^\circ}} = f((t))$ peuvent être considérées comme des droites et l'on observe effectivement un prurallédisme de variation entre I et I_{P° .

ANSIPHEICH' BRAXIIIQUIE

IDe cess observations on peut tiver deux applications pratiques:

((II)) Om peut, connaissant les tensions de vapeur à différentes températures, domc $I_{I\!\!I}^{(r)}$, prévoir la variation de I pour un corps donné et par suite les possibilités de séptimen deux constituants en faisant varier la température.

((2)) Plour une température donnée, la tension de vapeur d'un soluté peut être exprimée en fonction de l'indice de rétention et des tensions de vapeur des deux *n*-presentimes woisines ((équation 3)).. On a donc ::

$$\log P^{\nu}_{S} - L_{11} = f((I_{S}, P^{o}_{z}, P^{o}_{z+2})) + L_{2}$$

ID'autitue punt, ll'équation dl'Antoine, liant $P^{o}{}_{S}$ et la température s'écrit

$$\log \mathbb{P}^{n} = \mathcal{A} - \frac{\mathcal{B}}{\mathcal{C} + \mathcal{U}}$$

On a dome

$$\mathcal{A} = \frac{B}{C + t} - \mathcal{L}_{11} = f((\mathcal{I}_{S_1}, \mathcal{P}^{\circ}_{z_1}, \mathcal{P}^{\circ}_{z_1+2})) + \mathcal{L}_{2}$$
(4)

Si on a détenniné I_S à trois températures, on obtient un système de trois équations d'ou l'on tire facilement les valeurs de B, C et $(A - L_1)$.

In, qui est le logarithme d'un nombre voisin de 1 (Tableau XVI), est faible et peut étue mégligé devant A, qui est environ 100 fois plus grand.

A pantiir des walkuns des indices de rétention figurant dans le Tableau VI, nous awons calkullé à l'aide de l'équation (4) les constantes de l'équation d'Antoine pour l'ensemble des octames. Les résultats obtenus sont présentés dans le Tableau XVII. Dans le même tableau on a inscrit les valeurs correspondantes extraites des tables de l'A.P.I.⁹. L'écant entre les valeurs calculées et les valeurs théoriques est presque tomjours imfénieur à n %.

Par conséquent si les mesures d'indices de rétention sont réalisées avec un approxeillage dans lequel les régulations de température et de débit ont été particulièrement soignées, on peut espérer abaisser cet écart et par suite utiliser ces résultats pour l'amalyse qualitative.

AMPPHLIKCANIIIKONS

Inous avons procédé à l'analyse d'une fraction (135–140°) d'un trimère de propyllème industniel hydrogéné. On a déterminé par spectrométrie de masse, que la compte considiénée ne contient que des paraffines. On a réalisé trois chromatogrammes

TABLEAU XVII

DÉTERMINATION DES CONSTANTES A, B ET C DE L'ÉQUATION D'ANTOINE POUR LES OCTANES

No.	Nom		Valeur théorique	Valeur calculée	% écart
I	2,2,4-Triméthylpentane	A B C	6.81189 1257.840 220.735	6.85494 1248.446 220.021	୦.63 ୦.74 ୦.35
2	2,2,3,3-Tétraméthylbutane	A B C	6.87665 1329.93 226.36	6.78984 1278.15 221.48	1.26 3.89 2.15
3	2,2-Diméthylhexane	A B C	6.83715 1273.594 215.072	6.90438 1275.064 215.861	0.98 0.01 0.37
4	2,5-Diméthylhexane	A B C	6.85984 1287.274 214.412	6.93072 1285.995 21.4.605	1.03 0.10 0.09
5	2,4-Diméthylhexane	A B C	6.85305 1287.876 214.790	6.91841 1288.421 214.960	Ф.95 Ф.04 Ф.08
6	2,2,3-Triméthylpentane	A B C	6.82546 1294.875 218.420	6.85351 1290.473 217.759	0.41 0.34 0.30
7	3,3-Diméthylhexane	A B C	6.85121 1307.882 217.439	6.87937 1297.405 216.304	0.41 0.80 0.52
8	2,3,4-Triméthylpentane	A B C	6.85396 1315.084 217.526	6.87124 1304.419 216.159	0.25 0.81 0.63
9	2,3,3-Triméthylpentane	A B C	6.84353 1328.046 220.375	6.83822 1310.214 217.496	0.08 1.34 1.30
10	2,3-Diméthylhexane	A B C	6.87004 1315.503 214.157	6.92488 1314.815 213.630	0.80 0.05 0.25
II	2-Méthyl-3-éthylpentane	A B C	6.86358 1318.120 215.306	6.87125 1312.925 215.833	0.11 0.39 0.24
12	2-Méthylheptane	A B C	6.91735 1337,468 213,693	6.95509 1320.659 212.177	0.54 1.25 0.71
13	4-Méthylheptane	A B C	6.90065 1327.661 212.568	6.95744 1323.375 212.076	0.82 0.32 0.23
14	3,4-Diméthylhexane	A B C	6.87986 1330.035 214.863	6.90561 1322.786 213.917	0.37 0.54 0.44
15	3-Méthyl-3-éthylpentane	A B C	6.86731 1347.209 219.684	6.85428 1323.215 215.959	0.19 1.78 1.69
16	3-Ethylhexane	A B C	6.89098 1327.884 212.595	6.95503 1328.324 212.019	0.93 0.03 0.27
17	3-Méthylheptane	A B C	6.89944 1331.530 212.414	6.95503 1328.324 212.019	0.80 0.24 0.18

à 36°, 58° et 80°. Ils sont reproduits sur la Fig. 12. L'exploitation de ces chromatogrammes est rapportée dans le Tableau XVIII.

Dans ce tableau, nous avons classé les pics obtenus aux trois températures, par indice de rétention croissant. Pour chacun des trois chromatogrammes nous avons indiqué la surface relative de chaque pic par rapport à la surface totale. Et, en regard de chacun des pics, nous avons mentionné la ou les paraffines en C₀ susceptibles d'être eluées dans ce pic (constituants possibles du pic). On constate ainsi que certains constituants sont isolés sur les trois chromatogrammes (3.5, A, 10, P, Q et R) alors que d'autres sont élués ensemble à une température et séparés à une autre ou aux deux autres températures. F (2,5-DiM C₇) et G (3,5-DiM C₇) sont élués ensemble à 36° et à 58° mais sont séparés à 80°. O (4-ET C₇) est élué avec K (3-M-4-ET C₆) à 80° et avec M (3,4-DiM C₇) à 36° et 58°, mais M est séparé de O à 80° et K est séparé de O à 36° et à 58°.

TABLEAU XVIII

ANALYSE QUANTITATIVE DE L'HYDROGÉNAT D'UN TRIMÈRE DE PROPYLÈNE INDUSTRIEL

Constituants	% surfe	ace		Analyse finale				
possibles	36°	58°	80°	No. des pics	Nom	% surface		
1-2			0.3					
2	0.3	0.3	-	2	2,2,5-TriM Ca	0.3		
3	0.1	0.1	0.2	3	2,2,4-TriM Ca	0.1		
5	1.7	I.7	I.7	5	2.3.5-TriM C.	1.7		
Ă	1.3	I.I	1.3	Ă	2,2-DiM C,	1.3		
B	0	13.6	14.6	в	2.4-DiM C.	14.1		
B-D-7	141.0				-,			
C	AL E			С	2-M-3-ET C.	4. I		
C-D		A.T		-		4		
8		4.8		8	2.6-DiM C-	4.8		
6-7-C-D-8			8.5	U	2,0 2 2 2 7	41.00		
F J		0.6	0.5	ਜ	4 4-DiM C.	0.6		
E-S	5.1	0.0	0.5		4,4	010		
F	5		172	ਸ	2 5-DiM C-	172		
Ġ			127	Ġ	2,5-DiM C-	12.7		
G-F	20.2	20.0	+/	u	3,3-121112 07	12.7		
T T	30.2	30.0	20	т	2 2-DIM C	2.0		
- H_I	20	4 • L	2,0	+	3,3-10 that 04	2.0		
1	2.0	28		т	a-M-a-FT C	2.7		
	3.4	2.0		J	2-11-3-121 06	3.1		
9°J	0.0		3.4	10	a a 4-TriM C	1.0		
10	0.9	1.0	1.1	10	2,3,4-11MIC ₆	1.0		
AT 1	3.5		- 6	IN T	$3-10-4-121$ C_{6}	4.0		
ملا مد مد 15 M	0.3		7.0	L	$2,3-101111 C_7$	7.9		
11-12-1 X-1 -		12.5		NT.				
	0.3			IN	3-1/1-3-1-1	0.3		
0 0 - 0 2 - 140			14.3	0				
IN-UP			4.0	U M	$4-EIC_7$	1.0		
M-O	15.0	15.1			3,4-D1M C7	14.0		
P	3-4	3.5	3.3	P	4-M C8	3.4		
N N N N N N N N N N N N N N N N N N N	0.8	0.8	0.6	ပ္ရ	3-1:1 C7	0.8		
K	2.2	2.3	2.3	ĸ	2-M C ₈	2.3		
5		3.0	2.8	S	3-M C ₈	2.9		
S-T	2.7					· · · · ·		
					Total	99.7		

CONCLUSION

égales.

Nous avons déterminé, à plusieurs températures, les indices de rétention de tous les alcanes en C_5 , C_6 , C_7 , C_8 et C_9 ; il est apparu que la variation de l'indice avec la température était fonction de la structure de la molécule; seule la précision de la détermination de l'indice obtenue sur colonnes capillaires permet de mettre en évidence ces variations.

Nous avons montré les avantages que l'on peut tirer de la connaissance précise de l'influence de la température sur la rétention pour l'analyse qualitative et quantitative d'un mélange de constituants de propriétés très voisines.

Enfin, nous avons relié, à une température donnée, l'indice de rétention d'un soluté à sa tension de vapeur, et ceci constitue une approche vers un moyen supplémentaire d'identification.

REMERCIEMENTS

Nous remercions la Direction de la Compagnie Française de Raffinage d'avoir bien voulu permettre la publication de ce travail.

RÉSUMÉ

La chromatographie en phase gazeuse sur colonne de grande efficacité et la réaction de microsynthèse par "methylene insertion" ont permis d'établir les indices de rétention à plusieurs températures de tous les alcanes en C_5 à C_9 avec un écart type de 0.149.

On a relié l'augmentation d'indice pour 10° à la structure moléculaire des isomères considérés et mis évidence un parallélisme entre la variation de l'indice et celle de la tension de vapeur d'un soluté, avec la température; il en découle un moyen d'accéder, à partir de la connaissance des I et $\Delta I/\Delta T$, aux valeurs des constantes de l'équation d'Antoine. On donne un exemple d'utilisation pratique du phénomène pour l'analyse quantitative détaillée d'un produit industriel complexe.

SUMMARY

Gas chromatography on a column of high efficacy as well as microsynthesis by means of "methylene insertion" have made it possible to determine the retention indices of all the alkanes from C_5 to C_9 at various temperatures, with a standard error of 0.149.

The increase in the index per 10° is correlated with the molecular structure of the isomers considered and a parallelism is drawn between the variation of the index and that of the vapour pressure of a solute with the temperature; this opens up the possibility, starting from known values of I and $\Delta I/\Delta T$, of obtaining the constants of

the equation of Antoine. An example is given of the practical application of the phenomenon to the detailed quantitative analysis of a complex industrial product.

BIBLIOGRAPHIE

- I J. H. PURNELL, dans D. H. DESTY ET C. L. A. HARBOURN (Rédacteurs), Vapour Phase Chromatography, Butterworths, London, 1957, p. 52.
- 2 B. D. BLAUSTEIN, C. ZAHN ET G. PANTAGES, J. Chromatog., 12 (1963) 104.
- 3 J. BRICTEUX ET G. DUYCKAERTS, J. Chromatog., 22 (1966) 221.
- 4 M. C. SIMMONS, D. B. RICHARDSON ET I. DVORETZKY, dans R. P. W. SCOTT (Rédacteur), Gas Chromatography 1960, Butterworths, London, 1960, p. 211.
- 5 M. L. PETERSON ET J. HIRSH, dans L. S. ETTRE (Rédacteur), Open Tubular Columns in Gas Chromatography, Plenum Press, New York, 1965, p. 157; J. Lipid Res., 1 (1959) 132.
 6 W. v. E. DOERING, R. G. LAUGHLIN ET N. CHAUDHURI, J. Am. Chem. Soc., 78 (1956) 3224.
- 7 DATA SUBCOMMITTEE OF THE GAS CHROMATOGRAPHY DISCUSSION GROUP OF THE INSTITUTE OF PETROLEUM, J. Gas Chromatog., No. 1 (1966) 1.
- 8 G. J. PIEROTTI, C. H. DEAL, E. L. DERR ET P. E. PORTER, J. Am. Chem. Soc., 78 (1956) 2989.
- 9 Selected Values of Properties of Hydrocarbons, American Petroleum Institute Research Project 44, Carnegie Institute of Technology, Pittsburgh, Pa., 1949; National Bureau of Standards, Washington, D.C., 1949.